
7.1 IntroductIon

Till now we have written some programs and might
have realised that as the problem gets complex, the
number of lines in a program increase, which makes the
program look bulky and difficult to manage. Consider
the following problem statement:

There is a company that manufactures tents as per
user’s requirements. The shape of the tent is cylindrical
surmounted by a conical top.

“Once you succeed in writing
the programs for [these]

complicated algorithms, they
usually run extremely fast.
The computer doesn’t need

to understand the algorithm,
its task is only to run the

programs.”

– R. Tarjan

Chapter 7

Functions

In this chapter

 » Introduction to
Functions

 » User Defined
Functions

 » Scope of a Variable
 » Python Standard

Library

Figure 7.1: Shape of a tent

The company performs the following tasks to fix the
selling price of each tent.

1. Accept user requirements for the tent, such as
a) height
b) radius
c) slant height of the conical part

2. Calculate the area of the canvas used
3. Calculate the cost of the canvas used for making

the tent
4. Calculate the net payable amount by the customer

that is inclusive of the 18% tax
The company has created a computer program for

quick and accurate calculation for the payable amount
as shown in program 7-1.

Ch 7.indd 143 08-Apr-19 12:23:12 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi144

Program 7-1 Program to calculate the payable amount
for the tent.

#Program 7-1
#Program to calculate the payable amount for the tent without
#functions

print("Enter values for the cylindrical part of the tent in
meters\n")
h = float(input("Enter height of the cylindrical part: "))
r = float(input("Enter radius: "))

l = float(input("Enter the slant height of the conical part in
meters: "))
csa_conical = 3.14*r*l #Area of conical part
csa_cylindrical = 2*3.14*r*h #Area of cylindrical part

Calculate area of the canvas used for making the tent
canvas_area = csa_conical + csa_cylindrical
print("The area of the canvas is",canvas_area,"m^2")

#Calculate cost of the canvas
unit_price = float(input("Enter the cost of 1 m^2 canvas: "))
total_cost= unit_price * canvas_area
print("The total cost of canvas = ",total_cost)

#Add tax to the total cost to calculate net amount payable by the
#customer
tax = 0.18 * total_cost;
net_price = total_cost + tax
print("Net amount payable = ",net_price)

Another approach to solve the above problem is
to divide the program into different blocks of code as
shown in Figure 7.2.

Figure 7.2: Calculation of the cost of the tent

Ch 7.indd 144 08-Apr-19 12:23:12 PM

Reprint 2025-26

Functions 145

The process of dividing a computer program into
separate independent blocks of code or separate
sub-problems with different names and specific
functionalities is known as modular programming.
In this chapter, we will learn about the benefits of
this approach.

7.2 FunctIons
In programming, the use of function is one of the
means to achieve modularity and reusability. Function
can be defined as a named group of instructions that
accomplish a specific task when it is invoked. Once
defined, a function can be called repeatedly from
different places of the program without writing all the
codes of that function everytime, or it can be called from
inside another function, by simply writing the name of
the function and passing the required parameters, if
any (Section 7.3). The programmer can define as many
functions as desired while writing the code. The program
7-1 is rewritten using user defined functions as shown
in program 7-2.

Program 7-2 Program to calculate the payable
amount for the tent using user
defined functions.

#Program 7-2
#Program to calculate the cost of tent
#function definition
def cyl(h,r):
 area_cyl = 2*3.14*r*h #Area of cylindrical part
 return(area_cyl)

#function definition
def con(l,r):
 area_con = 3.14*r*l #Area of conical part
 return(area_con)

#function definition
def post_tax_price(cost): #compute payable amount for the tent
 tax = 0.18 * cost;
 net_price = cost + tax
 return(net_price)

print("Enter values of cylindrical part of the tent in meters:")
h = float(input("Height: "))
r = float(input("Radius: "))

Ch 7.indd 145 08-Apr-19 12:23:12 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi146

csa_cyl = cyl(h,r) #function call

l = float(input("Enter slant height of the conical area in meters: "))
csa_con = con(l,r) #function call

#Calculate area of the canvas used for making the tent
canvas_area = csa_cyl + csa_con
print("Area of canvas = ",canvas_area," m^2")

#Calculate cost of canvas
unit_price = float(input("Enter cost of 1 m^2 canvas in rupees: "))
total_cost = unit_price * canvas_area
print("Total cost of canvas before tax = ",total_cost)
print("Net amount payable (including tax) = ",post_tax_price(total_
cost))

If we compare program 7-1 and 7-2, it is evident that
program 7-2 looks more organised and easier to read.

7.2.1 The Advantages of Function
Suppose in further the company decides to design
another type of tent whose base is rectangular, while
the upper part remains the same. In such a scenario,
some part of the existing code can be reused by calling
the function con(l,r). If the company develops other
products or provides services, and where 18% tax rate
is to be applied, the programmer can use the function
post_tax_price(cost)directly.

Thus, following are the advantages of using functions
in a program:

• Increases readability, particularly for longer code
as by using functions, the program is better
organised and easy to understand.

• Reduces code length as same code is not required
to be written at multiple places in a program. This
also makes debugging easier.

• Increases reusability, as function can be called from
another function or another program. Thus, we can
reuse or build upon already defined functions and
avoid repetitions of writing the same piece of code.

• Work can be easily divided among team members
and completed in parallel.

7.3 user deFIned FunctIons

Taking advantage of reusability feature of functions,
there is a large number of functions already available

Ch 7.indd 146 08-Apr-19 12:23:13 PM

Reprint 2025-26

Functions 147

in Python under standard library (section 7.5). We can
directly call these functions in our program without
defining them. However, in addition to the standard
library functions, we can define our own functions while
writing the program. Such functions are called user
defined functions. Thus, a function defined to achieve
some task as per the programmer's requirement is
called a user defined function.

7.3.1 Creating User Defined Function
A function definition begins with def (short for define).
The syntax for creating a user defined function is
as follows:

• The items enclosed in "[]" are called parameters
and they are optional. Hence, a function may or
may not have parameters. Also, a function may or
may not return a value.

• Function header always ends with a colon (:).
• Function name should be unique. Rules for naming

identifiers also applies for function naming.
• The statements outside the function indentation

are not considered as part of the function.
Program 7-3 Write a user defined function to add 2

numbers and display their sum.

#Program 7-3
#Function to add two numbers
#The requirements are listed below:
 #1. We need to accept 2 numbers from the user.
 #2. Calculate their sum
 #3. Display the sum.

#function definition
def addnum():
 fnum = int(input("Enter first number: "))
 snum = int(input("Enter second number: "))
 sum = fnum + snum
 print("The sum of ",fnum,"and ",snum,"is ",sum)

#function call
addnum()

Ch 7.indd 147 15-Jun-21 11:16:13 AM

Reprint 2025-26

Computer SCienCe – ClaSS xi148

In order to execute the function addnum(), we need
to call it. The function can be called in the program by
writing function name followed by () as shown in the
last line of program 7-3.

Output:
Enter first number: 5
Enter second number: 6
The sum of 5 and 6 is 11

7.3.2 Arguments and Parameters
In the above example, the numbers were accepted from
the user within the function itself, but it is also possible
for a user defined function to receive values at the time
of being called. An argument is a value passed to the
function during the function call which is received in
corresponding parameter defined in function header.

Program 7-4 Write a program using a user defined
function that displays sum of first n
natural numbers, where n is passed as
an argument.

#Program 7-4
#Program to find the sum of first n natural numbers
#The requirements are:
 #1. n be passed as an argument
 #2. Calculate sum of first n natural numbers
 #3. Display the sum

#function header
def sumSquares(n): #n is the parameter
 sum = 0
 for i in range(1,n+1):
 sum = sum + i
 print("The sum of first",n,"natural numbers is: ",sum)

 num = int(input("Enter the value for n: "))
 #num is an argument referring to the value input by the user
 sumSquares(num) #function call

Let us assume that the user has
input 5 during the execution of the
program 7-4. So, num refers to the value
5. It is then used as an argument in
the function:
sumSquares(num)

Argument

num

n

5Parameter

Figure 7.3: Both argument and parameter
refers to the same value

Ch 7.indd 148 08-Apr-19 12:23:13 PM

Reprint 2025-26

Functions 149

Since the function is called, the control is transferred
to execute the function

 def sumSquares(n):

where parameter n also refers to the value 5 which
num is referring to as shown in Figure 7.3.

Since both num and n are referring to the same value,
they are bound to have the same identity. We can use
the id() function to find the identity of the object that
the argument and parameter are referring to. Let us
understand this with the help of the following example.

Program 7-5 Write a program using user defined
function that accepts an integer and
increments the value by 5. Also display
the id of argument (before function call),
id of parameter before increment and
after increment.

#Program 7-5
#Function to add 5 to a user input number
#The requirements are listed below:
 #1. Display the id()of argument before function call.
 #2. The function should have one parameter to accept the argument
 #3. Display the value and id() of the parameter.
 #4. Add 5 to the parameter
 #5. Display the new value and id()of the parameter to check
 #whether the parameter is assigned a new memory location or
 #not.
def incrValue(num):
 #id of Num before increment
 print("Parameter num has value:",num,"\nid =",id(num))
 num = num + 5
 #id of Num after increment
 print("num incremented by 5 is",num,"\nNow id is ",id(num))
number = int(input("Enter a number: "))
print("id of argument number is:",id(number)) #id of Number
incrValue(number)

Output:
Enter a number: 8
id of argument number is: 1712903328
Parameter num has value: 8
id = 1712903328
num incremented by 5 is 13
Now id is 1712903408

number and num
have the same id

Let us understand the above output through illustration
(see Figure 7.4):

The id of Num has changed.

Ch 7.indd 149 08-Apr-19 12:23:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi150

Number

Num

8

id

id

Before
increment

Number

Num

8

13

id

id
After
increment

5 added
to 8

Figure 7.4: ID of argument and parameter before and after increment

Both argument and parameter can have the same
name as shown in program 7-6.

Program 7-6 Write a program using a user defined
function myMean() to calculate the mean
of floating values stored in a list.

#Program 7-6
#Function to calculate mean
#The requirements are listed below:
 #1. The function should have 1 parameter (list containing floating
 #point values)
 #2. To calculate mean by adding all the numbers and dividing by
 #total number of elements

def myMean(myList): #function to compute means of values in list
 total = 0
 count = 0
 for i in myList:
 total = total + i #Adds each element i to total
 count = count + 1 #Counts the number of elements
 mean = total/count #mean is calculated
 print("The calculated mean is:",mean)
myList = [1.3,2.4,3.5,6.9]
#Function call with list "myList" as an argument
myMean(myList)

Output:
The calculated mean is: 3.5250000000000004

Program 7-7 Write a program using a user defined
function calcFact() to calculate and
display the factorial of a number num
passed as an argument.

1712903408

1712903328

1712903328

1712903328

Ch 7.indd 150 08-Apr-19 12:23:13 PM

Reprint 2025-26

Functions 151

#Program 7-7
#Function to calculate factorial
#The requirements are listed below:
 #1. The function should accept one integer argument from user.
 #2. Calculate factorial. For example:
 #3. Display factorial

def calcFact(num):
 fact = 1
 for i in range(num,0,-1):
 fact = fact * i
 print("Factorial of",num,"is",fact)

num = int(input("Enter the number: "))
calcFact(num)

Output:
Enter the number: 5
Factorial of 5 is 120

Note: Since multiplication is commutative 5! = 5*4*3*2*1 =
1*2*3*4*5

(A) String as Parameters
In programs 7-5 to 7-7, the arguments passed are of
numeric type only. However, in some programs, user
may need to pass string values as an argument, as
shown in program 7-8.
Program 7-8 Write a program using a user defined

function that accepts the first name and
lastname as arguments, concatenate
them to get full name and displays the
output as:

Hello full name

For example, if first name is Gyan and lastname is
 Vardhan, the output should be:

Hello Gyan Vardhan

#Program 7-8
#Function to display full name
#The requirements are listed below:
 #1. The function should have 2 parameters to accept first name and
 #last name.
 #2. Concatenate names using + operator with a space between first
 #name and last name.
 #3. Display full name.

Ch 7.indd 151 08-Apr-19 12:23:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi152

def fullname(first,last):
#+ operator is used to concatenate strings
 fullname = first + " " + last
 print("Hello",fullname)
#function ends here
first = input("Enter first name: ")
last = input("Enter last name: ")
#function call
fullname(first,last)

Output:
Enter first name: Gyan
Enter last name: Vardhan
Hello Gyan Vardhan

(B) Default Parameter
Python allows assigning a default value to the parameter.
A default value is a value that is predecided and assigned
to the parameter when the function call does not have
its corresponding argument.

Program 7-9 Write a program that accepts numerator
and denominator of a fractional number
and calls a user defined function
mixedFraction() when the fraction
formed is not a proper fraction. The
default value of denominator is 1. The
function displays a mixed fraction only
if the fraction formed by the parameters
does not evaluate to a whole number.

#Program 7-9
#Function to display mixed fraction for an improper fraction
#The requirements are listed below:
 #1. Input numerator and denominator from the user.
 #2. Check if the entered numerator and denominator form a proper
 #fraction.
 #3. If they do not form a proper fraction, then call
 #mixedFraction().
 #4. mixedFraction()display a mixed fraction only when the fraction
 #does not evaluate to a whole number.

def mixedFraction(num,deno = 1):
 remainder = num % deno
#check if the fraction does not evaluate to a whole number
 if remainder!= 0:
 quotient = int(num/deno)
 print("The mixed fraction=", quotient,"(",remainder, "/",
deno,")")
 else:

Ch 7.indd 152 08-Apr-19 12:23:13 PM

Reprint 2025-26

Functions 153

 print("The given fraction evaluates to a whole number")
#function ends here
num = int(input("Enter the numerator: "))
deno = int(input("Enter the denominator: "))
print("You entered:",num,"/",deno)
if num > deno: #condition to check whether the fraction is
improper
 mixedFraction(num,deno) #function call
else:
 print("It is a proper fraction")

Output:
Enter the numerator: 17
Enter the denominator: 2
You entered: 17 / 2
The mixed fraction = 8 (1 / 2)

In the above program, the denominator entered is 2,
which is passed to the parameter "deno" so the default
value of the argument deno is overwritten.

Let us consider the following function call:

mixedFraction(9)
Here, num will be assigned 9 and deno will use the

default value 1.

Note:
• A function argument can also be an expression, such as

 mixedFraction(num+5,deno+5)
In such a case, the argument is evaluated before calling

the function so that a valid value can be assigned to the
parameter.

• The parameters should be in the same order as that of
the arguments.

The default parameters must be the trailing parameters
in the function header that means if any parameter is
having default value then all the other parameters to its
right must also have default values. For example,

def mixedFraction(num,deno = 1)
def mixedFraction(num = 2,deno = 1)

Let us consider few more function definition headers:
#incorrect as default must be the last
#parameter
def calcInterest(principal = 1000, rate,
time = 5):
#correct
def calcInterest(rate,principal = 1000,
time = 5):

Ch 7.indd 153 08-Apr-19 12:23:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi154

7.3.3 Functions Returning Value
A function may or may not return a value when called.
The return statement returns the values from the
function. In the examples given so far, the function
performs calculations and display result(s).They do
not return any value. Such functions are called void
functions. But a situation may arise, wherein we need
to send value(s) from the function to its calling function.
This is done using return statement.

The return statement does the following:
• returns the control to the calling function.
• return value(s) or None.

Program 7-10 Write a program using user defined
function calcPow() that accepts base
and exponent as arguments and returns
the value Baseexponent where Base and
exponent are integers.

#Program 7-10
#Function to calculate and display base raised to the power exponent
#The requirements are listed below:
 #1. Base and exponent are to be accepted as arguments.
 #2. Calculate Baseexponent

 #3. Return the result (use return statement)
 #4. Display the returned value.
def calcpow(number,power): #function definition
 result = 1
 for i in range(1,power+1):
 result = result * number
 return result

base = int(input("Enter the value for the Base: "))
expo = int(input("Enter the value for the Exponent: "))
answer = calcpow(base,expo) #function call
print(base,"raised to the power",expo,"is",answer)

Output:
Enter the value for the Base: 5
Enter the value for the Exponent: 4
5 raised to the power 4 is 625

So far we have learnt that a function may or may
not have parameter(s) and a function may or may not
return any value(s). In Python, as per our requirements,
we can have the function in either of the following ways:

• Function with no argument and no return value
• Function with no argument and with return value(s)
• Function with argument(s) and no return value

Ch 7.indd 154 08-Apr-19 12:23:13 PM

Reprint 2025-26

Functions 155

• Function with argument(s) and return value(s)

7.3.4 Flow of Execution
Flow of execution can be defined as the order in which
the statements in a program are executed. The Python
interpreter starts executing the instructions in a
program from the first statement. The statements are
executed one by one, in the order of appearance from
top to bottom.

When the interpreter encounters a function definition,
the statements inside the function are not executed
until the function is called. Later, when the interpreter
encounters a function call, there is a little deviation
in the flow of execution. In that case, instead of going
to the next statement, the control jumps to the called
function and executes the statement of that function.
After that, the control comes back the point of function
call so that the remaining statements in the program
can be executed. Therefore, when we read a program,
we should not simply read from top to bottom. Instead,
we should follow the flow of control or execution. It is
also important to note that a function must be defined
before its call within a program.
Program 7-11 Program to understand the low of

 execution using functions.

#Program 7-11
#print using functions
helloPython() #Function Call

def helloPython(): #Function definition
 print("I love Programming")

 On executing the above code the following error is
produced:

Traceback (most recent call last):
 File "C:\NCERT\Prog 7-11.py", line 3, in <module>
 helloPython() #Function Call
NameError: name 'helloPython' is not defined

The error ‘function not defined’ is produced even
though the function has been defined. When a function
call is encountered, the control has to jump to the
function definition and execute it. In the above program,
since the function call precedes the function definition,
the interpreter does not find the function definition and
hence an error is raised.

Ch 7.indd 155 08-Apr-19 12:23:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi156

 That is why, the function definition should be made
before the function call as shown below:

def helloPython(): #Function definition
 print("I love Programming")

helloPython() #Function Call

Figure 7.5 explains
the flow of execution
for two programs. The
number in square
brackets shows the
order of execution of
the statements.

Sometime, a
function needs to
return multiple
values which may be
returned using tuple.
Program 7-12 shows
a function which
returns two values
area and perimeter of
rectangle using tuple.

[2]

[3]

[1]

[4]

def Greetings(Name):

 print("Hello "+Name)

Greetings("John")

print("Thanks")

#Function Header

#Function Call

[4]

[5]

[1]

[2]

[3][6]

[7]

[8]

def RectangleArea(l,b):

return l*b

l = input("Length: ")

b = input("Breadth: ")

Area = RectangleArea(l,b)

print(Area)

print("thanks")

#Function Header

#Function Call

Figure 7.5: Order of execution of statements

Program 7-12 Write a program using user defined
function that accepts length and breadth
of a rectangle and returns the area and
perimeter of the rectangle.

#Program 7-12
#Function to calculate area and perimeter of a rectangle
#The requirements are listed below:
 #1. The function should accept 2 parameters.
 #2. Calculate area and perimeter.
 #3. Return area and perimeter.

def calcAreaPeri(Length,Breadth):
 area = length * breadth
 perimeter = 2 * (length + breadth)
 #a tuple is returned consisting of 2 values area and perimeter
 return (area,perimeter)

l = float(input("Enter length of the rectangle: "))
b = float(input("Enter breadth of the rectangle: "))
#value of tuples assigned in order they are returned
area,perimeter = calcAreaPeri(l,b)
print("Area is:",area,"\nPerimeter is:",perimeter)

Ch 7.indd 156 08-Apr-19 12:23:13 PM

Reprint 2025-26

Functions 157

Output:
Enter Length of the rectangle: 45
Enter Breadth of the rectangle: 66
Area is: 2970.0

Perimeter is: 222.0

Multiple values in
Python are returned
through a tuple.(Ch 11)Multiple values in

Python are returned
through a tuple. (Ch. 10)

#Program 7-13
#Function to simulate a traffic light
#It is required to make 2 user defined functions trafficLight() and
#light().

def trafficLight():
 signal = input("Enter the colour of the traffic light: ")
 if (signal not in ("RED","YELLOW","GREEN")):
 print("Please enter a valid Traffic Light colour in
CAPITALS")
 else:
 value = light(signal) #function call to light()
 if (value == 0):
 print("STOP, Your Life is Precious.")
 elif (value == 1):
 print ("PLEASE GO SLOW.")
 else:

Program 7-13 Write a program that simulates a traffic
 light . The program should consist of the
 following:

1. A user defined function trafficLight() that accepts
input from the user, displays an error message
if the user enters anything other than RED,
YELLOW, and GREEN. Function light() is called
and following is displayed depending upon return
value from light().

a) “STOP, your life is precious” if the value
returned by light() is 0.

b) “Please WAIT, till the light is Green “ if the
value returned by light() is 1

c) “GO! Thank you for being patient” if the value
returned by light() is 2.

2. A user defined function light() that accepts a string
as input and returns 0 when the input is RED,
1 when the input is YELLOW and 2 when the
input is GREEN. The input should be passed as
an argument.

3. Display “ SPEED THRILLS BUT KILLS” after the
function trafficLight() is executed.

Ch 7.indd 157 08-Apr-19 12:23:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi158

 print("GO!,Thank you for being patient.")
#function ends here

def light(colour):
 if (colour == "RED"):
 return(0);
 elif (colour == "YELLOW"):
 return (1)
 else:
 return(2)
#function ends here

trafficLight()
print("SPEED THRILLS BUT KILLS")

Output:
Enter the colour of the traffic light: YELLOW
PLEASE GO SLOW.
SPEED THRILLS BUT KILLS

7.4 scope oF a VarIable

A variable defined inside a function cannot be
accessed outside it. Every variable has a well-defined

accessibility. The part of the program where a
variable is accessible can be defined as the scope
of that variable. A variable can have one of the
following two scopes:

A variable that has global scope is known as a
global variable and a variable that has a local scope
is known as a local variable.

(A) Global Variable
In Python, a variable that is defined outside any function
or any block is known as a global variable. It can be
accessed in any functions defined onwards. Any change
made to the global variable will impact all the functions
in the program where that variable can be accessed.

(B) Local Variable
A variable that is defined inside any function or a block
is known as a local variable. It can be accessed only in
the function or a block where it is defined. It exists only
till the function executes.

Variable
Scope

Global
Scope

Local
Scope

Figure 7.6: Scope of a variable

Ch 7.indd 158 08-Apr-19 12:23:13 PM

Reprint 2025-26

Functions 159

Program 7-14 Program to access any variable outside
 the function

#Program 7-14
#To access any variable outside the function
num = 5
def myFunc1():
 y = num + 5
 print("Accessing num -> (global) in myFunc1, value = ",num)
 print("Accessing y-> (local variable of myFunc1) accessible, value=",y)

myFunc1()
print("Accessing num outside myFunc1 ",num)
print("Accessing y outside myFunc1 ",y)

Output:
Accessing num -> (global) in myFunc1, value = 5
Accessing y-> (local variable of myFunc1) accessible, value = 10
Accessing num outside myFunc1 5
Traceback (most recent call last):
 File "C:\NCERT\Prog 7-14.py", line 9, in <module>
 print("Accessing y outside myFunc1 ",y)
NameError: name ‘y’ is not defined

 Global variable output, Local variable output

y generates error when it is
accessed outside myfunc1()

Note:
• Any modification to global variable is permanent and

affects all the functions where it is used.
• If a variable with the same name as the global variable

is defined inside a function, then it is considered local
to that function and hides the global variable.

• If the modified value of a global variable is to be used
outside the function, then the keyword global should
be prefixed to the variable name in the function.

Program 7-15 Write a program to access any variable
 outside the function.

#Program 7-15
#To access any variable outside the function

num = 5
def myfunc1():
 #Prefixing global informs Python to use the updated global
 #variable num outside the function
 global num
 print("Accessing num =",num)
 num = 10
 print("num reassigned =",num)
#function ends here

myfunc1()
print("Accessing num outside myfunc1",num)

Ch 7.indd 159 08-Apr-19 12:23:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi160

Output:
Accessing num = 5
num reassigned = 10
Accessing num outside myfunc1 10

Global variable num is accessed as the ambiguity is resolved by
prefixing global to it

7.5 python standard lIbrary

Python has a very extensive
standard library. It is a
collection of many built
in functions that can be
called in the program as
and when required, thus
saving programmer’s time
of creating those commonly
used functions everytime.

7.5.1 Built-in functions
Built-in functions are the ready-made functions in
Python that are frequently used in programs. Let us
inspect the following Python program:

#Program to calculate square of a number
a = int(input("Enter a number: ")
b = a * a
print(" The square of ",a ,"is", b)

In the above program input(), int() and print()
are the built-in functions. The set of instructions to be
executed for these built-in functions are already defined
in the python interpreter.

Let us consider the following Python statement
consisting of a function call to a built in function and
answer the given questions:

fname = input("Enter your name: ")
What is the name of the function being used?

• input()
Does the function accept a value or argument?

• Yes, because the parenthesis "()" consists of a
string "Enter your name".

Does the function return a value?
• Yes, since there is an assignment (=) operator

preceding the function name, it means that the
function returns a value which is stored in the
variable fname.

Hence, the function input() accepts a value and
returns a value.

Standard Library

User Defined

Function

Built-in

Module

Figure 7.7: Types of functions

Ch 7.indd 160 08-Apr-19 12:23:13 PM

Reprint 2025-26

Functions 161

Now consider the built-in functions int() and print(),
and answer the questions below:

• Does the function accept a value or argument?
• Does the function return a value?
Following is a categorised list of some of the

frequently used built-in functions in Python:

Built-in Functions

Input or Output Datatype
Conversion

Mathematical
Functions

Other Functions

input()

print()

bool()

chr()

dict()

float()

int()

list()

ord()

set()

str()

tuple()

abs()

divmod()

max()

min()

pow()

sum()

__import__()

len()

range()

type()

We have already used some of the built-in functions.
Let us get familiar with some of them as explained in
Table 7.1.

Table 7.1 Commonly used built-in functions

Function
Syntax

Arguments Returns Example
Output

abs(x) x may be an integer
or floating point
number

Absolute value of x >>> abs(4)
4
>>> abs(-5.7)

5.7

divmod(x,y) x and y are integers A tuple:
(quotient, remainder)

>>> divmod(7,2)
(3, 1)
>>> divmod(7.5,2)
(3.0, 1.5)
>>> divmod(-7,2)

(-4, 1)

max(sequence)
or
max(x,y,z,...)

x,y,z,.. may be
integer or floating
point number

Largest number
in the sequence/
largest of two or
more arguments

>>> max([1,2,3,4])
4
>>> max("Sincerity")
'y' #Based on ASCII value

Ch 7.indd 161 08-Apr-19 12:23:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi162

>>> max(23,4,56)

56

min(sequence)
or
min(x,y,z,...)

x, y, z,.. may be
integer or floating
point number

Smallest number
in the sequence/
smallest of two or
more arguments

>>> min([1,2,3,4])
1
>>> min("Sincerity")
'S'
#Uppercase letters have
lower ASCII values than
lowercase letters.
>>> min(23,4,56)

4

pow(x,y[,z]) x, y, z may be
integer or floating
point number

xy (x raised to the
power y)
if z is provided, then:
(xy) % z

>>> pow(5,2)
25.0
>>> pow(5.3,2.2)
39.2
>>> pow(5,2,4)

1

sum(x[,num]) x is a numeric
sequence and num
is an optional
argument

Sum of all the
elements in the
sequence from left to
right.
if given parameter,
num is added to the
sum

>>> sum([2,4,7,3])
16
>>> sum([2,4,7,3],3)
19
>>> sum((52,8,4,2))

66

len(x) x can be a sequence
or a dictionary

Count of elements
in x

>>> len(“Patience”)

8

>>> len([12,34,98])

3

>>> len((9,45))

2 >>>len({1:”Anuj”,2:”Razia”,

3:”Gurpreet”,4:”Sandra”})

4

7.5.2 Module
Other than the built-in functions, the Python standard
library also consists of a number of modules. While
a function is a grouping of instructions, a module
is a grouping of functions. As we know that when a
program grows, function is used to simplify the code
and to avoid repetition. For a complex problem, it may
not be feasible to manage the code in one single file.
Then, the program is divided into different parts under
different levels, called modules. Also, suppose we have
created some functions in a program and we want to
reuse them in another program. In that case, we can
save those functions under a module and reuse them.
A module is created as a python (.py) file containing a
collection of function definitions.

Ch 7.indd 162 08-Apr-19 12:23:13 PM

Reprint 2025-26

Functions 163

To use a module, we need to import the module. Once
we import a module, we can directly use all the functions
of that module. The syntax of import statement is as
follows:

import modulename1 [,modulename2, …]

This gives us access to all the functions in the
module(s). To call a function of a module, the function
name should be preceded with the name of the module
with a dot(.) as a separator.
The syntax is as shown below:

modulename.functionname()

(A) Built-in Modules
Python library has many built-in modules that are really
handy to programmers. Let us explore some commonly
used modules and the frequently used functions that
are found in those modules:

• math
• random
• statistics

1. Module name : math
It contains different types of mathematical functions.
Most of the functions in this module return a float value.
Some of the commonly used functions in math module
are given in Table 7.2. In order to use the math module
we need to import it using the following statement:

 import math

Remember, Python is case
sensitive. All the module
names are in lowercase.

Table 7.2 Commonly used functions in math module

Function
Syntax

Arguments Returns Example
Output

math.ceil(x) x may be an integer or
floating point number

ceiling value of x >>> math.ceil(-9.7)
-9
>>> math.ceil (9.7)
10
>>> math.ceil(9)
9

math.floor(x) x may be an integer or
floating point number

floor value of x >>> math.floor(-4.5)
-5
>>> math.floor(4.5)
4
>>> math.floor(4)
4

Ch 7.indd 163 08-Apr-19 12:23:14 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi164

math.fabs(x) x may be an integer or
floating point number

absolute value of x >>> math.fabs(6.7)
6.7
>>> math.fabs(-6.7)
6.7
>>> math.fabs(-4)
4.0

math.factorial(x) x is a positive integer factorial of x >>> math.factorial(5)
120

math.fmod(x,y) x and y may be an
integer or floating point
number

x % y with sign of x >>> math.fmod(4,4.9)
4.0
>>> math.fmod(4.9,4.9)
0.0
>>> math.fmod(-4.9,2.5)
-2.4
>>> math.fmod(4.9,-4.9)
0.0

math.gcd(x,y) x, y are positive integers gcd (greatest common
divisor) of x and y

>>> math.gcd(10,2)
2

math.pow(x,y) x, y may be an integer or
floating point number

xy (x raised to the
power y)

>>> math.pow(3,2)
9.0
>>> math.pow(4,2.5)
32.0
>>> math.pow(6.5,2)
42.25
>>> math.pow(5.5,3.2)
233.97

math.sqrt(x) x may be a positive
integer or floating point
number

square root of x >>> math.sqrt(144)
12.0
>>> math.sqrt(.64)
0.8

math.sin(x) x may be an integer or
floating point number in
radians

sine of x in radians >>> math.sin(0)
0
>>> math.sin(6)
-0.279

2. Module name : random
This module contains functions that are used for
generating random numbers. Some of the commonly
used functions in random module are given in Table
7.3. For using this module, we can import it using the
following statement:

import random

Table 7.3 Commonly used functions in random module

Function
Syntax

Argument Return Example
Output

random.random() No argument
(void)

Random
Real Number
(float) in the
range
0.0 to 1.0

>>> random.random()
0.65333522

Ch 7.indd 164 08-Apr-19 12:23:14 PM

Reprint 2025-26

Functions 165

random.
randint(x,y)

x, y are integers
such that
x <= y

Random integer
between x and y

>>> random.randint(3,7)
4
>>> random.randint(-3,5)
1
>>> random.randint(-5,-3)
-5.0

random.
randrange(y)

y is a positive integer
signifying the stop
value

Random integer
between 0 and y

>>> random.randrange(5)
4

random.
randrange(x,y)

x and y are positive
integers signifying
the start and stop
value

Random integer
between x and y

>>> random.randrange(2,7)
2

3. Module name : statistics
This module provides functions for calculating statistics
of numeric (Real-valued) data. Some of the commonly
used functions in statistics module are given in
Table 7.4. It can be included in the program by using
the following statements:

import statistics

Table 7.4 Some of the function available through statistics module

Function Syntax Argument Return Example
Output

statistics.mean(x) x is a numeric
sequence

arithmetic
mean

>>> statistics.
mean([11,24,32,45,51])
32.6

statistics.median(x) x is a numeric
sequence

median
(middle
value) of x

>>>statistics.
median([11,24,32,45,51])
32

statistics.mode(x) x is a sequence mode
(the most
repeated
value)

>>> statistics.
mode([11,24,11,45,11])
11
>>> statistics.
mode(("red","blue","red"))
'red'

Note:

• import statement can be written anywhere in the
program

• Module must be imported only once
• In order to get a list of modules available in Python, we

can use the following statement:
 >>> help("module")

• To view the content of a module say math, type the
following:

 >>> help("math")

Ch 7.indd 165 08-Apr-19 12:23:14 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi166

Figure 7.8: Content of module "math"

• The modules in the standard library can be found in
the Lib folder of Python.

(B) From Statement
Instead of loading all the functions into memory by
importing a module, from statement can be used to
access only the required functions from a module. It
loads only the specified function(s) instead of all the
functions in a module.
Its syntax is

>>> from modulename import functionname [,
functionname,...]

To use the function when imported using "from
statement" we do not need to precede it with the module
name. Rather we can directly call the function as shown
in the following examples:

Example 7.5
>>> from random import random
>>> random() #Function called without
the module name

 Output:
0.9796352504608387

Example 7.6
>>> from math import ceil,sqrt
>>> value = ceil(624.7)
>>> sqrt(value)

Output:
25.0

In example 7.2, the ceil value of 624.7 is stored in the
variable "value" and then sqrt function is applied on the

Good Programming
Practice: Only using

the required function(s)
rather than importing a
module saves memory.

Ch 7.indd 166 08-Apr-19 12:23:14 PM

Reprint 2025-26

Functions 167

variable "value". The above example can be rewritten as:
>>> sqrt(ceil(624.7))

The execution of the function sqrt() is dependent
on the output of ceil() function.

If we want to extract the integer part of 624.7 (we will
use trunc() function from math module), we can use
the following statements.

#ceil and sqrt already been imported above
>>> from math import trunc
>>> sqrt(trunc(625.7))

Output:
25.0

A programming statement wherein the functions or
expressions are dependent on each other’s execution
for achieving an output is termed as composition, here
are some other examples of composition:

• a = int(input("First number: "))

• print("Square root of ",a ," = ",math.sqrt(a))

• print(floor(a+(b/c)))

• math.sin(float(h)/float(c))
Besides the available modules in Python standard

library, we can also create our own module consisting
of our own functions.

"""Docstrings""" is
also called Python

documentation strings.
It is a multiline comment
that is added to describe
the modules, functions,
etc. They are typically
added as the first line,
using 3 double quotes.

#Program 7-16
#The requirement is:
 #1. Write a docstring describing the module.
 #2. Write user defined functions as per the specification.
 #3. Save the file.
 #4. Import at shell prompt and execute the functions.

Program 7-16 Create a user defined module basic_
 math that contains the following user
 defined functions:

1. To add two numbers and return their sum.
2. To subtract two numbers and return their difference.
3. To multiply two numbers and return their product.
4. To divide two numbers and return their quotient

and print “Division by Zero” error if the denominator
is zero.

5. Also add a docstring to describe the module. After
creating module, import and execute functions.

Ch 7.indd 167 08-Apr-19 12:23:14 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi168

"""
 basic_math Module

This module contains basic arithmetic operations
that can be carried out on numbers

"""
#Beginning of module
def addnum(x,y):
 return(x + y)
def subnum(x,y):
 return(x - y)
def multnum(x,y):
 return(x * y)
def divnum(x,y):
 if y == 0:
 print ("Division by Zero Error")
 else:
 return (x/y) #End of module

Output:
#Statements for using module basic_math
>>> import basic_math
#Display descriptions of the said module
>>> print(basic_math.__doc__)

 basic_math Module

This module contains basic arithmetic operations
that can be carried out on numbers

>>> a = basic_math.addnum(2,5) #Call addnum() function of the
>>> a #basic_math module
7
>>> a = basic_math.subnum(2,5) #Call subnum() function of the
>>> a #basic_ math module
-3
>>> a = basic_math.multnum(2,5) #Call multnum() function of the
>>> a #basic_math module
10
>>> a = basic_math.divnum(2,5) #Call divnum() function of the
>>> a #basic_math module
0.4
>>> a = basic_math.divnum(2,0) #Call divnum() function of the
Zero Divide Error #basic_math module

__doc__ variable stores the docstring. To display docstring of a module we
need to import the module and type the following:
print(<modulename>.__doc__) #__ are 2 underscore without space

Ch 7.indd 168 08-Apr-19 12:23:14 PM

Reprint 2025-26

Functions 169

summary

• In programming, functions are used to achieve
modularity and reusability.

• Function can be defined as a named group of
instructions that are executed when the function
is invoked or called by its name. Programmers
can write their own functions known as user
defined functions.

• The Python interpreter has a number of functions
built into it. These are the functions that are
frequently used in a Python program. Such functions
are known as built-in functions.

• An argument is a value passed to the function
during function call which is received in a parameter
defined in function header.

• Python allows assigning a default value to
the parameter.

• A function returns value(s) to the calling function
using return statement.

• Multiple values in Python are returned through
a Tuple.

• Flow of execution can be defined as the order in
which the statements in a program are executed.

• The part of the program where a variable is accessible
is defined as the scope of the variable.

• A variable that is defined outside any particular
function or block is known as a global variable. It
can be accessed anywhere in the program.

• A variable that is defined inside any function or block
is known as a local variable. It can be accessed only
in the function or block where it is defined. It exists
only till the function executes or remains active.

• The Python standard library is an extensive
collection of functions and modules that help the
programmer in the faster development of programs.

• A module is a Python file that contains definitions of
multiple functions.

• A module can be imported in a program using
import statement.

• Irrespective of the number of times a module is
imported, it is loaded only once.

• To import specific functions in a program from a
module, from statement can be used.

notes

Ch 7.indd 169 08-Apr-19 12:23:14 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi170

exercIse

1. Observe the following programs carefully, and
identify the error:

a) def create (text, freq):

 for i in range (1, freq):

 print text

create(5) #function call

b) from math import sqrt,ceil

def calc():

 print cos(0)

calc() #function call

c) mynum = 9

def add9():

 mynum = mynum + 9

 print mynum

add9() #function call

d) def findValue(vall = 1.1, val2, val3):

 final = (val2 + val3)/ vall

 print(final)

findvalue() #function call

e) def greet():

 return("Good morning")

greet() = message #function call

2. How is math.ceil(89.7) different from math.floor
(89.7)?

3. Out of random() and randint(), which function
should we use to generate random numbers between
1 and 5. Justify.

4. How is built-in function pow() function different from
function math.pow() ? Explain with an example.

5. Using an example show how a function in Python
can return multiple values.

6. Differentiate between following with the help of an
example:

a) Argument and Parameter
b) Global and Local variable

7. Does a function always return a value? Explain with
an example.

notes

Ch 7.indd 170 08-Apr-19 12:23:14 PM

Reprint 2025-26

Functions 171

actIVIty-based QuestIons

Note: Writing a program implies:
• Adding comments as part of documentation
• Writing function definition
• Executing the function through a function call

1. To secure your account, whether it be an email,
online bank account or any other account, it is
important that we use authentication. Use your
programming expertise to create a program using
user defined function named login that accepts
userid and password as parameters (login(uid,pwd))
that displays a message “account blocked” in case of
three wrong attempts. The login is successful if the
user enters user ID as "ADMIN" and password as
"St0rE@1". On successful login, display a message
“login successful”.

2. XYZ store plans to give festival discount to its
customers. The store management has decided to
give discount on the following criteria:

Shopping Amount Discount Offered

>=500 and <1000 5%

>=1000 and <2000 8%

>=2000 10%

An additional discount of 5% is given to customers

who are the members of the store. Create a program
using user defined function that accepts the shopping
amount as a parameter and calculates discount and net
amount payable on the basis of the following conditions:

Net Payable Amount = Total Shopping Amount –
Discount.
3. ‘Play and learn’ strategy helps toddlers understand

concepts in a fun way. Being a senior student you
have taken responsibility to develop a program using
user defined functions to help children master two
and three-letter words using English alphabets and
addition of single digit numbers. Make sure that you
perform a careful analysis of the type of questions
that can be included as per the age and curriculum.

notes

Ch 7.indd 171 08-Apr-19 12:23:14 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi172

4. Take a look at the series below:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55…
To form the pattern, start by writing 1 and 1.
Add them together to get 2. Add the last two
numbers: 1+2 = 3.Continue adding the previous
two numbers to find the next number in the series.
These numbers make up the famed Fibonacci
sequence: previous two numbers are added to get
the immediate new number.

5. Create a menu driven program using user defined
functions to implement a calculator that performs
the following:

a) Basic arithmetic operations(+,-,*,/)
b) log10(x),sin(x),cos(x)

SuggeSted Lab. exerciSeS

1. Write a program to check the divisibility of a
number by 7 that is passed as a parameter to the
user defined function.

2. Write a program that uses a user defined function
that accepts name and gender (as M for Male,
F for Female) and prefixes Mr/Ms on the basis of
the gender.

3. Write a program that has a user defined function
to accept the coefficients of a quadratic equation
in variables and calculates its determinant. For
example : if the coefficients are stored in the
variables a,b,c then calculate determinant as
b2-4ac. Write the appropriate condition to check
determinants on positive, zero and negative and
output appropriate result.

4. ABC School has allotted unique token IDs from (1 to
600) to all the parents for facilitating a lucky draw
on the day of their Annual day function. The winner
would receive a special prize. Write a program using
Python that helps to automate the task.(Hint: use
random module)

5. Write a program that implements a user defined
function that accepts Principal Amount, Rate,
Time, Number of Times the interest is compounded
to calculate and displays compound interest.
(Hint: CI=P*(1+r/n)nt)

NoteS

Ch 7.indd 172 15-Jun-21 11:16:46 AM

Reprint 2025-26

Functions 173

6. Write a program that has a user defined function
to accept 2 numbers as parameters, if number 1
is less than number 2 then numbers are swapped
and returned, i.e., number 2 is returned in place
of number1 and number 1 is reformed in place of
number 2, otherwise the same order is returned.

7. Write a program that contains user defined
functions to calculate area, perimeter or surface
area whichever is applicable for various shapes
like square, rectangle, triangle, circle and cylinder.
The user defined functions should accept the values
for calculation as parameters and the calculated
value should be returned. Import the module and
use the appropriate functions.

8. Write a program that creates a GK quiz consisting
of any five questions of your choice. The questions
should be displayed randomly. Create a user defined
function score() to calculate the score of the quiz and
another user defined function remark (scorevalue)
that accepts the final score to display remarks as
follows:

Marks Remarks

5 Outstanding

4 Excellent

3 Good

2 Read more to score more

1 Needs to take interest

0 General knowledge will always help you. Take it seriously.

case study-based QuestIon

For the SMIS system extended in Chapter 6 let us do
the following:
1. 7.1 Convert all the functionality in Chapter 5 and 6

using user defined functions.
2. 7.2 Add another user defined function to the above

menu to check if the student has short attendance
or not. The function should accept total number of
working days in a month and check if the student
is a defaulter by calculating his or her attendance
using the formula: Count of days the student was

notes

Ch 7.indd 173 08-Apr-19 12:23:14 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi174

present or the total number of working days. In case
the attendance calculated is less than 78%, the
function should return 1 indicating short attendance
otherwise the function should return 0 indicating
attendance is not short.
Let’s peer review the case studies of others based on

the parameters given under “DOCUMENTATION TIPS”
at the end of Chapter 5 and provide a feedback to them.

notes

Ch 7.indd 174 08-Apr-19 12:23:14 PM

Reprint 2025-26

	kecs1ps
	kecs101
	kecs102
	kecs103
	kecs104
	kecs105
	kecs106
	kecs107
	kecs108
	kecs109
	kecs110
	kecs111

